

Materials Science & Technology

hy.muve

hydrogen driven municipal vehicle

Vom Labor auf die Strasse – ein technologisches und sozio- ökonomisches Projekt

Peter Schlienger Dipl. El. Ing. ETH 24.09.2009

Hilfe2

Diese Folie enthält zwei Mastergruppen (Master und Titelmaster), welche den Corporate-Design-konformen Auftritt definieren. Der jetzt zugewiesene Empa-Master 1 sieht für die Titelfolie das Empa-Logo vor. Den weiteren Folien ist kein Logo zugewiesen. Für längere Vorträge mit Zwischentiteln empfehlen wir, den Folien mit Zwischentiteln den Empa-Master 2 (mit Logo unten rechts) zuzuweisen. Dazu öffnen Sie via Ansicht > Aufgabenbereich > Foliendesign-Entwurfsvorlage rechts die Masterauswahl. Nun markieren Sie im linken Ansichtsfenster die Folien, denen Empa-Master 2 zugewiesen werden soll (mindestens zwei, ansonsten für den ganzen Satz Empa-Master 1 verwendet wird). Weitere Hilfe erhalten Sie bei Monika Ernst, 4995 (Empa, Dübendorf)

M. Ernst; 04.02.2005

Agenda: Motivation Analyse Konzept Simulation Umsetzung Zukunft

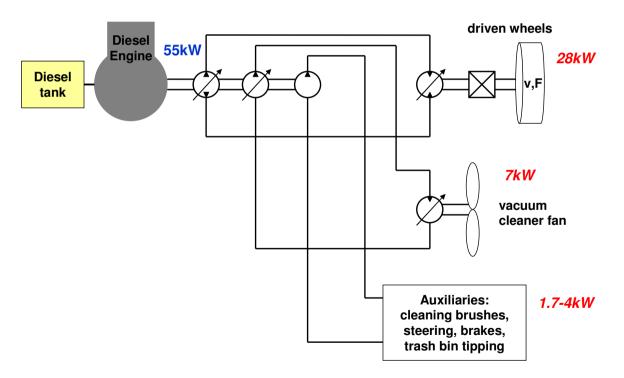
Agenda

- Motivation
- Eigenschaften des Kehrmaschinen-Antriebs
- Konzept der Leistungssysteme für hy.muve
- Modellierung und Simulation
- Erwartete Energieeinsparung
- Realisierung des Prototypen CityCat H2
- Ausblick

Projektziel

"Entwicklung einer marktnahen mit Wasserstoff betriebenen Kehrmaschine und deren Praxiserprobung in 3 schweizer Pilotregionen."

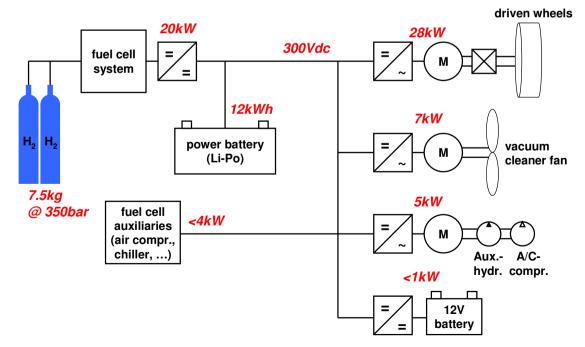
- Wieso eine Kehrmaschine?
 - lokaler Betrieb (Betankung)
 - allg. vielversprechendes Lastkollektiv
 - Sichtbarkeit, Nähe zur Öffentlichkeit (sozioökonomische Studien)



Eigenschaften des Kehrmaschinen-Antriebs

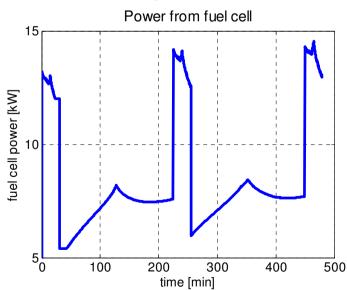
- Konventionelle Kehrmaschine:
 - Dieselmotor, hydraulische Leistungsverteilung
- Betrieb:

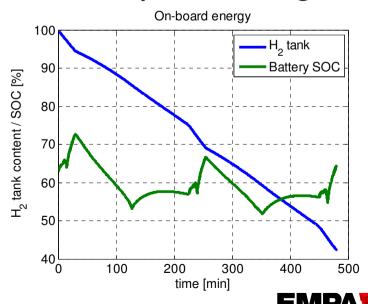
Agenda


- Reinigung:
 - Teillast
 - → tiefer η
- Dislokation:
 - Volllast

Konzept der Leistungssysteme für hy.muve

- Schlussfolgerung: BZ/Batterie-Hybrid
 - Brennstoffzellensystem liefert Bandenergie mit einer vernünftigen Effizienz
 - Leistungsbatterie deckt Lastspitzen ab

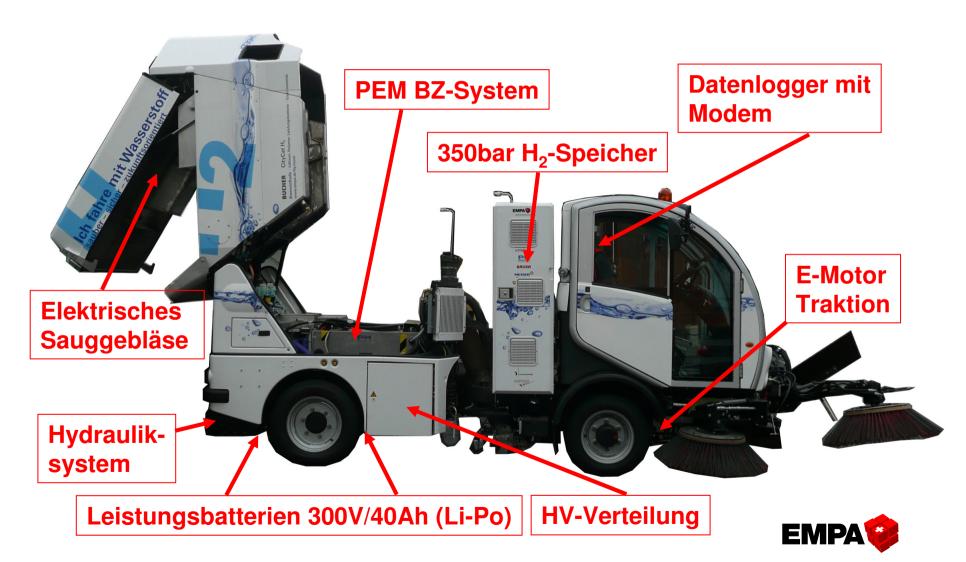




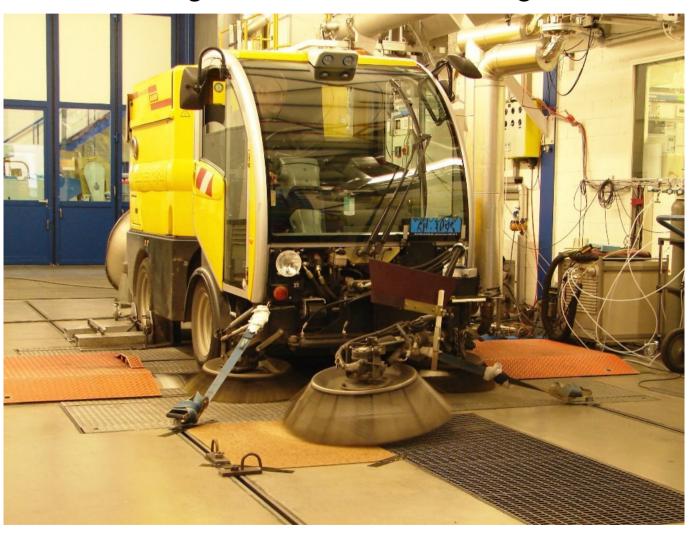
Modellierung und Simulation

Analyse

- erzeugen eines Fahr-/Betriebs-Musters
- erstellen eines Computer-Modells
- Simulationsergebnisse als Auslegungsgrundlage der Komponenten, Verbrauchsoptimierung


Erwartete Energieeinsparung

Analyse


- Simulation zeigt, dass
 - der Energieverbrauch ("tank to wheel") im Vergleich zum Dieselantrieb halbiert (*) werden kann
 - "well-to-whell" CO₂-Emissionen können um 30% (*) verringert werden, selbst wenn H₂ aus Erdgas gewonnen wird ("worst case H₂-Produktion")
- Auswertungen des laufenden Feldtests werden Modelldaten verfeinern und obenstehende Erwartungen bestätigen oder widerlegen.
- (*) basierend auf Fahr-/Reinigungszyklus von Empa

Realisierung

Untersuchungen an einer Diesel-Maschine Identifizierung von effektiver Leistung und Verbrauch

"normale"
Bucher
CityCat
CC2020

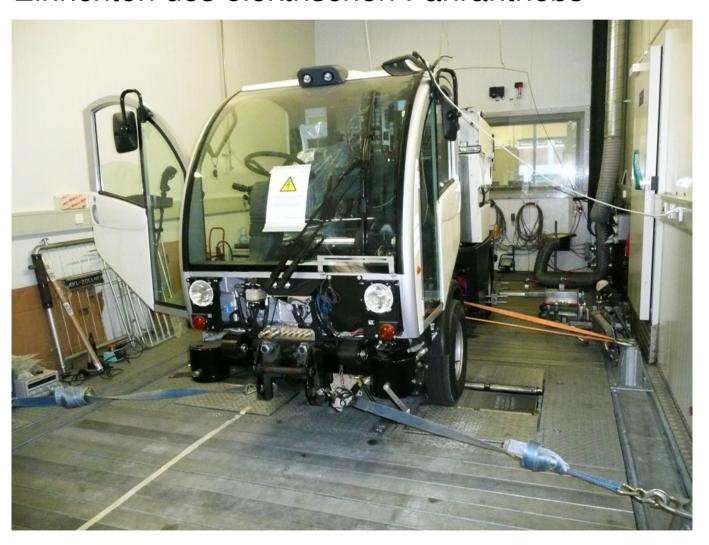
Untersuchungen an einer Diesel-Maschine Festlegen des Bauraums

2.8l Dieselmotor

Hydrostatischer Antriebsstrang

Systemkomponenten erwerben bzw. anfertigen lassen Lithium polymer Batterie-Pack

80 Zellen in Reihenschaltung, 40Ah pro Zelle


Aufbau des Prototypen

Wasserstoffspeicher: 3x100L bei 350bar

Aufbau des Prototypen Einrichten des elektrischen Fahrantriebs

Fahrantrieb:

30kW (Dauer), 500Nm (Spitze)

Aufbau des Prototypen Installation des Brennstoffzellensystems

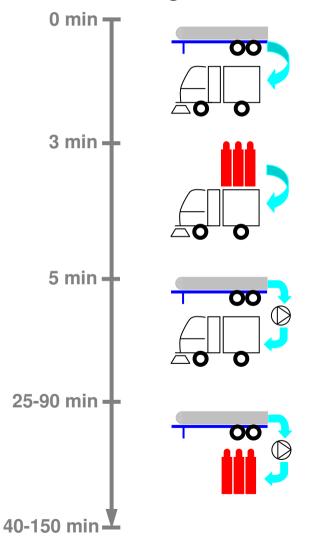
20kW PEM **BZ-System**

[PEM: proton exchange membrane]

Tests, Parametrierung

Garage Schützt Brennstoffzelle vor Frost

Container als Garage, isoliert und mit Heizung ausgestattet


Garage Betankung

H₂-Vorrat auf LKW-Anhänger

Garage Betankungsablauf

1. Überströmen ab Trailer bis Druckausgleich

Konzep

- 2. Überströmen ab 300-bar-Bündel bis Druckausgleich
- 3. Nachdrücken mittels Kolbenpumpe bis Enddruck (350bar) erreicht
- 4. Nachfüllen des Bündels auf 300bar

Garage Betankung

über Nacht in der Garage

Dauert 1/2h bis mehrere Stunden, je nach Druck in **Fahrzeug- und Vorratstanks**

Garage mit H₂-Überwachung und Zwangsbelüftung

Agenda:

Motivation

Analyse

Hy.muve Vollendet

Ausblick

Agenda:

- hy.muve wird durch ausgewähltes Fahrpersonal der Stadtreinigung Basel bis Anfang 2010 betrieben
- Sozio-ökonomische Begleitforschung läuft
- Technische Datenaufzeichnungen und auswertungen zum "Echt-Vergleich" zw. CityCat H₂ und CityCat 2020 (Diesel) bezüglich Gesamtenergieaufwand und CO₂-Emissionen
- Weitere Testregionen: St. Gallen, Bern, ...

Vielen Dank für Ihre Aufmerksamkeit!

Besonderen Dank an alle Projektpartner und Geldgeber!

Kontakt: <u>Peter.Schlienger@empa.ch</u>

Website: http://www.empa.ch/hy.muve

